Model Forecasting Accuracy Along an East Coast Offshore Grid Corridor

Mike Dvorak
Sailor’s Energy
Berkeley, California
sailorsenergy.com

Cristina Archer
University of Delaware

Wind Energy Symposium
University of Delaware
February 27, 2013

Funding: US DOE Mid-Atlantic Offshore Integration & Interconnection (MAOWIT), DE-EE0005366
Overview

• East Coast offshore wind during peak-electricity demand times
• Seasonal East Coast wind resource
• Attributes of an ideal offshore grid
• Mid-Atlantic Offshore Wind Integration & Transmission (MAOWIT) region
• Forecast performance of WRF in MAOWIT
East Coast Modeling Domains

- WRF-ARW. 5.0 km res.
- 41 vertical levels (2, 5, 7, 10, 12, ..., 45, 90 m, ...)
- NARR (~32 km) initial and lateral boundary conditions
- 2006-2010 (5 years)
- Reinitialized every 4 days

Validation Time Series

color=observation, black=WRF-ARW
WRF-ARW Validation

- Compared all available buoy and tower data hourly from 2006-2010

- NOAA National Data Buoy Center buoys (23) and tall towers (9)

- Met the following criteria to show modeling skill [Pielke Sr., 2002]:
 \[
 \begin{align*}
 (1) & \quad \sigma \approx \sigma_{obs} \\
 (2) & \quad \text{RMSE} \ < \ \sigma_{obs} \\
 (3) & \quad \text{RMSE}_{\text{UB}} \ < \ \sigma_{obs}
 \end{align*}
 \]

WRF-ARW showed modeling skill for winds off the East Coast (i.e. passed three criterion)
All of US East Coast or about 1/3 of US electric demand could be generated with offshore wind

90m WRF-ARW model results 2006-2010

What Time is Offshore Wind Power Most Useful?

- Analyzed hourly electric-load data
 - Developed **method to detect peaks** for shown load regions over 4-5 years
 - Found East Coast **peaks** between **08:00-21:00 EST** (median)

Example “**single peak**” (summer)
Seasonal Peak-Time Resource

Virginia-to-Maine – 08:00 – 21:00 EST

Region has:
1) best wind resource
2) shallow water
3) lower hurricane risk

Can we meet all peak-time demand with offshore wind?

Mostly! We can meet all Virginia-to-Maine peak-time demand with wind off those states.... except in the summer (only 79%).

Winter 2006-2010 – 08:00-21:00 EST

Capacity Factor

- Used a REpower 5M, 5 MW power curve, determined capacity factor out to 200-m depth
- Incredibly strong resource
- CF as high as 65%

Winter Nor’Easter

Download video [here](#)

Legend

Red - 100% power

Blue - 10% power

Black - No power

2010-01-17 03:00 EST
Capacity Factor

- Resource is diminished from winter but still strong
- Interesting observation with Block Canyon, suggests sea breeze driven by SST

East Coast Sea Breeze Drivers

- The sea breeze present to varying extents along the entire eastern seaboard
- **Ekman pumping** off the New Jersey and New York coasts responsible for upwelling, creating lower SSTs
- **Peaks during late spring**, early summer when ocean temperatures are still cold [Gedzelman et al., 2005]
- A moderate synoptic-scale **westerly** wind may **kill** the sea breeze

Source: NOAA

Photo credit: Ralph Turncotte. From *Sea Breeze and Local Winds* by John E. Simpson.
Sea breeze likely dominant where resource is best.

Long Island to Cape Cod ideal.

Gulf of Maine great but deep water.

Summer - The Bermuda High

- **Clear skies** dominate, due to westward migration of the Bermuda High
- **Winds** relatively slow compared to other seasons
- Mid-latitude **storm track** well to the north
- Occasional **hurricane** is always possible...
 - Virginia-to-Maine safer for development
 - No Saffir-Simpson Category 4 or 5’s

Source: e-education.psu.edu
Summer Sea Breeze

Surface Weather Map at 7:00 A.M. E.S.T.

2010-07-03 07:00 EST

Chart: NOAA
Summer Sea Breeze

Download video here

Legend
Red - 100% power
Blue - 10% power
Black - No power

Surface Temp: 11-37 deg C
Locating the Best US Offshore Grid Location

Twelve candidate 500 MW farms
- best overall
- best summertime resource
- water ≤50 m

What's the best subset four of these farms? (i.e. 4x500 MW=2000MW grid)

Building the Ideal Offshore Grid

Wind farms combined to

- Reduce power correlation
- Increase average power
- Reduce ramp rates

Conclusions:
• Found **interconnection benefits** at smaller distances than previously found
• Greater than **450 km** separation **required** for synoptic and mesoscale interconnection

Power Forecasting - MAOWIT

- Analyzing large build out of the **Atlantic Wind Connection** (~80 GW)
- What is the **effect** of wind forecasting errors on **grid** stability?
- **Designed** overlapping 48-hr **forecasting system**
 - Used in Princeton Mid-Atlantic power grid model
MAOWIT Offshore Grid Forecast Performance

- 48-hour power-grid forecast
 - WRF-ARW 5.0-km resolution
 - 24-hour overlap
 - 10-min output
 - Jan, Apr, Jul, Oct 2010

 - Compared to 8 buoys and 1 tower
 - WRF and obs. scaled via log-law to 90-m
 - 78 GW max

Table: **0-24 hour** forecast performance (all stats in **GW**)

<table>
<thead>
<tr>
<th></th>
<th>Obs. mean power</th>
<th>Obs. std. dev.</th>
<th>Fcst. std. dev.</th>
<th>Fcst. bias</th>
<th>Fcst. RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>42.8</td>
<td>23.5</td>
<td>23.6</td>
<td>-2.8</td>
<td>13.1</td>
</tr>
<tr>
<td>Apr</td>
<td>24.6</td>
<td>18.3</td>
<td>21.8</td>
<td>6.9</td>
<td>15.2</td>
</tr>
<tr>
<td>Jul</td>
<td>17.4</td>
<td>13.9</td>
<td>20.6</td>
<td>8.0</td>
<td>16.3</td>
</tr>
<tr>
<td>Oct</td>
<td>36.1</td>
<td>23.4</td>
<td>24.2</td>
<td>-0.6</td>
<td>15.8</td>
</tr>
<tr>
<td>all</td>
<td>30.2</td>
<td>22.4</td>
<td>23.2</td>
<td>2.9</td>
<td>15.3</td>
</tr>
</tbody>
</table>
MAOWIT Offshore Grid Forecast Performance

Table: **24-48 hour** forecast performance (all stats in **GW**)

<table>
<thead>
<tr>
<th></th>
<th>Obs. mean power</th>
<th>Obs. std. dev.</th>
<th>Fcst. std. dev.</th>
<th>Fcst. bias</th>
<th>Fcst. RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>42.8</td>
<td>23.5</td>
<td>23.5</td>
<td>-1.8</td>
<td>13.4</td>
</tr>
<tr>
<td>Apr</td>
<td>24.6</td>
<td>18.3</td>
<td>22.1</td>
<td>6.5</td>
<td>18.0</td>
</tr>
<tr>
<td>Jul</td>
<td>17.4</td>
<td>13.9</td>
<td>20.8</td>
<td>5.2</td>
<td>16.6</td>
</tr>
<tr>
<td>Oct</td>
<td>36.1</td>
<td>23.4</td>
<td>24.7</td>
<td>-1.3</td>
<td>16.6</td>
</tr>
<tr>
<td>all</td>
<td>30.2</td>
<td>22.4</td>
<td>23.8</td>
<td>2.2</td>
<td>16.3</td>
</tr>
</tbody>
</table>

- Overall, **good forecast** given assumptions and amount of **observations**
- **Bias** in Apr and Jul could likely be improved with more resolved **sea surface temperatures** + more **coastal observations**
Summary / Future

• **East Coast** offshore wind resource **strong** during **peak-electricity** demand times

• **Sea breeze** important to keep turbines generating during **summer months**

• More **research** needed to model **stable boundary layer** better – sea breeze driver

• Need more **tower observations** offshore to **validate** models – publically available

Questions/comments: Mike Dvorak <mike@sailorsenergy.com>